- 最后登录
- 2018-12-19
- 注册时间
- 2012-8-20
- 阅读权限
- 90
- 积分
- 54706
- 纳金币
- 32328
- 精华
- 41
|
【SIGGRAPH Asia 2012专题*技术论文】
雕塑,堆叠,结构和盒:快速定向包围盒优化的旋转群SO(3,R)Fast oriented bounding box optimization on the rotation group SO(3, R)
Chia-Tche Chang, Bastien Gorissen, Samuel Melchior
本文发现的最小体积方向包围盒(OBB)的N点的有限集合,记为X⊂R3的问题。该问题由在寻找的长方体,即,矩形平行六面体,包封X的最小体积。为2D的情况下,在图1中说明了这一点。每个OBB被定义及其中心X∈R3,其尺寸∈R 3,和其取向R∈SO(3,R)。这种旋转组是在R上的特殊正交群的3度:
SO(3,R)= R∈GL(3,R)| RT R = I= RRT,DET(R)= 1,
其中,一般线性群GL(3,R)是3度,也就是3-3可逆实矩阵的集合。矩阵R的旋转,如在图1中示出的参照帧的前到Eξ。由CH(X)和XC⊂X,分别表示X和它的顶点的集合的凸包。正如N =| X|,让NV =| XC|是在CH(X)的顶点的数量。这个凸包,可以得到其成本高达O(N log N)的预处理步骤。
This article deals with the problem of finding the minimum-volume Oriented Bounding Box (OBB) of a given finite set of N points,denoted by X ⊂ R3. The problem consists in finding the cuboid,that is, rectangular parallelepiped, of minimal volume enclosing X .This is illustrated for the 2D case in Figure 1. Each OBB is defined by its center X ∈ R3, its dimension ∈ R3, and its orientation R ∈ SO(3, R). This rotation group is the special orthogonal group of degree 3 over R:
SO(3, R) = R ∈ GL(3, R) | RT R = I = RRT , det(R) = 1 ,
where GL(3, R) is the general linear group of degree 3, that is,the set of 3-by-3 invertible real matrices. The matrix R rotates the reference frame ex onto eξ as shown in Figure 1. The convex hull of X and the set of its vertices are denoted by CH(X ) and X C ⊂ X , respectively. Just as N = |X |, let NV = |X C| be the number of vertices of CH(X ). This convex hull can be obtained as a preprocessing step with cost O(N log N ).
要了解该论文的详情呢,就下载附件好好研究一下哈~更多新技术分享尽在web3D纳金网http://www.narkii.com/ |
|